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Objective: To report on the development of human parthenogenetic blastocysts and an in vitro attachment that was
generated from noninseminated cryopreserved human oocytes for the first time.
Design: Prospective study.
Setting: Department of reproductive medicine in a medical institute in Buenos Aires, Argentina.
Patient(s): Five healthy fertile donors.
Intervention(s): Artificial activation of noninseminated cryopreserved human oocytes after thawing, parthenote
culture, and their in vitro attachment.
Main Outcome Measure(s): Survival rate, activation rate, cleavage rate, and blastocyst formation.
Result(s): Thirty-six of 38 cryopreserved noninseminated oocytes survived after thawing (survival rate, 94.7%).
Thirty-one of 36 oocytes showed one pronucleus (activation rate, 86.1%). Thirty of 31 cleaved (cleavage rate,
96.8%). Five of 30 showed cavitation (blastocyst rate, 16.7%).
Conclusion(s): Noninseminated cryopreserved human oocytes showed a high survival rate after thawing. They
responded very satisfactorily to artificial activation, which was followed by a high rate of parthenogenetic embryos,
which can develop into blastocysts. In the future, these could be a new source for development of human parthe-
nogenetic stem cells. (Fertil Steril� 2008;89:943–7. �2008 by American Society for Reproductive Medicine.)
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Human oocyte cryopreservation now is slowly becoming
mainstream in the daily practice of assisted reproductive
technology procedures, thanks to its potential therapeutic
applications (1–7). It also can be a great source of oocytes
for research in different fields.

The therapeutic uses of human embryonic stem cells that
are derived from viable pre-embryos are very promising
(8–11). However, some countries argue against this usage
because of the ethical dilemmas it may cause. One of the
alternative protocols proposed is parthenogenesis, in which
embryonic development is initiated without sperm contribu-
tion. Parthenogenetic activation mainly was studied in exper-
imental species (12–14).

Studies elsewhere have demonstrated the possibility of
obtaining stem cells from the parthenogenetic activation of
oocytes of nonhuman primates (14). An important point to
clarify is that although parthenogenesis is a common method
for reproduction among lower organisms, the mammalian
parthenote fails to produce a successful pregnancy (15).
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As far as we know, there have been no reports showing the
use of noninseminated cryopreserved human oocytes as
a source of oocytes for parthenogenetic development.

The objective of the present study is to report for the first
time on the development of human parthenogenetic blasto-
cysts and their in vitro attachment from noninseminated
cryopreserved human oocytes.

MATERIALS AND METHODS

Oocytes Donors

The oocytes were provided from five healthy, fertile donors
(mean age � SD was 32.2 � 3.4).

Informed consent forms approved by the institutional
review board of our institution’s Human Subjects Research
and Ethics Committee were signed by all donors who partic-
ipated in the present study.

The donors were given a complete medical checkup, consist-
ing of a detailed personal and family medical history, psycho-
logical evaluation, gynecological exam, and ultrasound scan.

A complete blood test was performed to check for human
immunodeficiency virus, hepatitis, and syphilis, and a karyo-
type analysis was performed, as well as hormonal testing, to
ensure the viability of the potential donors.
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After oocyte recovery, the donors were periodically and
carefully checked, and they were discharged after obtaining
a normal ultrasound post-menstruation.

Ovarian Stimulation

Controlled ovarian hyperstimulation was initiated in all pa-
tients by using the GnRH analogue leuprolide acetate (given
SC) from the midluteal phase of the previous cycle. Gonado-
tropin therapy was performed by using recombinant FSH
(Puregon, Organon Argentina, Buenos Aires, Argentina).

Regular monitoring was performed by using serial transva-
ginal ultrasonography and serum E2 levels, as published
elsewhere (6).

Ovulation was induced by using hCG (10,000 IU, admin-
istered IM; Pregnyl, Organon Argentina), when at least two
follicles of R18 mm in diameter were observed, with
adequate E2 concentrations. The mean date of hCG adminis-
tration was on day 12 of the cycle. Transvaginal ultrasound–
guided oocyte retrieval was performed 34 hours later.

Oocyte Selection

Once the oocytes were identified in the follicular fluids, they
were transferred to human tubal fluid medium that was sup-
plemented with 0.5% human serum albumin (Irvine Scien-
tific, Santa Ana, CA) and were cultured in a 5% CO2

atmosphere at 37�C for 3 hours.

Complete removal of cumulus and corona cells was
performed by using a brief exposure to hyaluronidase
(80 IU/mL; Sigma Chemical, St. Louis, MO) and mechanical
manipulation with fine-bore glass pipettes. Only oocytes
showing an extruded polar body (that therefore presumably
were at the metaphase II stage) were frozen after culture
for about 4 hours from retrieval.

Freezing and Thawing Procedure

Thirty-eight noninseminated fresh human metaphase II
oocytes were cryopreserved by using the 1,2-propanediol
slow-freeze–rapid-thaw method with 0.3 M sucrose (16).

All gametes were washed in Dulbecco’s phosphate-buff-
ered saline solution (1�; Irvine Scientific), supplemented
with 30% serum substitute supplement (Irvine Scientific).
After that, they were placed in 1.5 M 1,2-propanediol that
was supplemented with 30% serum substitute supplement
for 10 minutes. Afterward, the oocytes were transferred to
the loading solution containing 1.5 M 1,2-propanediol,
30% serum substitute supplement, and 0.3 M sucrose; loaded
into plastic straws; and placed into a biological freezer.

The temperature was gradually lowered from 16�C to –6.5�C
at a rate of –2�C/min, at which point manual seeding was per-
formed. The temperature continued to be lowered at a rate of
0.3�C/min, until –35�C was reached. The straws finally were
plunged into liquid nitrogen (�196�C) and stored for later use.
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The thawing procedure was performed at room tempera-
ture. The straws were air-warmed for 30 seconds and then
plunged into a 30�C water bath for 40 seconds. The cryopro-
tectant was removed by transferring the oocytes through de-
creasing concentrations of propanediol solution (1 M to 0.5
M in each) containing 0.3 M sucrose, followed by a dilution
of 0.3 M sucrose alone; finally, they were washed in Dulbec-
co’s phosphate-buffered saline solution (1�). All the solu-
tions were supplemented with 30% serum substitute
supplement. Finally, the viable oocytes were cultured in hu-
man tubal fluid medium that was supplemented with 0.5%
human serum albumin at 37�C in an atmosphere of 5%
CO2 in air for R3 hours before activation.

Artificial Oocyte Activation

After thawing, 36 noninseminated oocytes were parthenoge-
netically activated by using a combination of ionomycin
(CalBiochem, San Diego, CA) and 6-dimethylamino purine
(Sigma, St Louis, MO). They were exposed to manipulation
medium (human tubal fluid–HEPES) with 10 uM of ionomy-
cin for 6 minutes at 37�C in room air. The oocytes then were
moved to a Kþ-modified simplex optimized medium
(KSOM) culture medium (Specialty Media) þ human serum
albumin with 2 mM of 6-dimethylamino purine for 3 hours at
37�C, 6% CO2 in air. Parthenogenetic embryos were changed
to KSOMþ human serum albumin medium for 72 hours and
then to another fresh KSOM þ human serum albumin media
drop at 37�C, 6% CO2 in air. Parthenogenetic blastocysts
were plated on top of mitotically inactivated human umbilical
cord fibroblasts, with the whole embryo culture method or
partial embryo culture described by Kim et al. (17), depend-
ing on the morphology of the blastocyst and the appearance
of the inner mass cells (IMCs). The medium used was Knock-
out-Dulbecco’s Modified Eagle Medium (KO-DMEM;
GIBCO Invitrogen, Grand Island, NY) supplemented with
15% fetal calf serum (GIBCO), penicillin/streptomycin, 1�
nonessential amino acids, 2 mM L-glutamine, 0.1 mM 2-mer-
captoethanol, and 4 ng/mL basic Fibroblast Growth Factor.

All parthenotes were checked periodically to monitor their
growth and attachment, and the medium was renewed during
the checks. Photographic registers were made.

RESULTS

Thirty-six of 38 cryopreserved noninseminated oocytes
survived after thawing (survival rate, 94.7%).

Thirty-one of 36 oocytes showed only one pronucleus (ac-
tivation rate, 86.1%; Fig. 1A). Thirty of 31 cleaved (cleavage
rate, 96.8%; Fig. 1B).

After activation, three embryos on day 6 and two embryos
on day 7 showed cavitation. According to the classification of
Gardner et al. (18), the quality of the blastocysts mainly was
poor (Fig. 1C). The blastocyst rate was 16.7%.

Human parthenogenetic blastocysts were plated. After
plating, one blastocyst exhibited incipient attachment, and
the other showed complete attachment (Fig. 1D).
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No further development was observed.

Fifteen nonevolutive cleaved parthenotes were plated on
day 9 after activation. Six of 15 showed attachment.

After 63 days in co-culture, three of three parthenotes
showed attachment. No signs of growth, measured either in
cell number and/or colony size, were observed.

DISCUSSION

Many published studies have reported the use of cryopre-
served oocytes that had been frozen for different purposes
(1, 2, 6, 7, 19–24).

During recent years, the main challenge in this area has
been to improve the survival rate of cryopreserved oocytes.

The oocyte survival rate after cryopreservation has been
reported to be variable (27%–64%). In a study published else-
where, we reported a survival rate of 30% when using 0.1 M
sucrose (2). In another recent study, other investigators re-
ported a survival rate of 37%, also using 0.1 M sucrose (24).

Because Fabbri and co-investigators reported that a higher
concentration of sucrose (0.3 M) dramatically improved the

survival rate of cryopreserved oocytes (83%) (16), other
investigators repeated the same procedure, with similar
results (23).

In the present study, we used 0.3 M sucrose to cryopre-
serve 38 fresh, noninseminated oocytes, and the survival
rate after thawing was 94.7%. These results are further ev-
idence of the beneficial effects of higher concentrations of
sucrose on the survival rate after thawing of cryopreserved
oocytes.

To date, parthenogenetic activation of oocytes was
performed in most mammals, including mice, goats, cows,
monkeys, and human beings (12–15, 25–33).

Instead of using fertilized and viable embryos for research,
this procedure could give scientists the opportunity to work in
this field in countries that have restrictions on the use of
human gametes and human embryos.

Most of the published literature regarding parthenogenetic
activation in human beings is based on the use of oocytes that
failed to fertilize after IVF-ICSI procedures. Hence, they
were unfertilized human aged oocytes that were exposed to
different activation techniques (25, 26). We consider that

FIGURE 1

Oocyte photomicrographs. (A) Pronucleus. (B) Cleavage. (C) Poor-quality blastocysts. (D) Blastocyst
attachment.
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this is not the most appropriate material to evaluate partheno-
genetic activation in human oocytes, because they were in
contact with sperm and also experienced adverse aging ef-
fects. In our laboratory, 164 of 197 fresh human oocytes
were activated (activation rate, 83.25%) to compare different
activation techniques (Polak de Fried, unpublished data).

In the present study, the source of the human oocytes for
parthenogenetic activation was noninseminated, cryopre-
served human oocytes, and the parthenogenetic activation
rate was 86.1%, the cleavage rate was 96.8%, and the cavita-
tion rate was 16.7%. According to this study, the cryopreser-
vation procedure does not affect the parthenogenetic
activation rate and the late development of the parthenotes.

Freezing oocytes could be a good technique for the preser-
vation of female fertility that has been reduced as the result of
medical treatments or as a result of the detrimental effect of
aging. In the future, cryopreserved human oocytes also could
be a valuable source of stem cells for therapeutic applications
that may produce stem cells with immunological compe-
tence. In addition, their parthenogenetic activation could pro-
vide the opportunity to work in this field for scientists in
countries that have restrictions on the use of human gametes
and embryos. A great number of in-depth and ongoing studies
are needed to provide more evidence in this respect.

As far as we know, this is the first report about the par-
thenogenetic activation of noninseminated cryopreserved
human oocytes.

The high survival rate allowed for significant parthenoge-
netic formation and blastocyst development and attachment.
Currently, we continue the experiments because our goal is to
achieve the possibility of obtaining stem cells from this
source.
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